
11:00-12:00, Wed, 6th July 2022

60 minutes | Introductory Audience

Social: @MichaelShah
Web: mshah.io
Courses: courses.mshah.io
YouTube:
www.youtube.com/c/MikeShah 1

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah

Please do not redistribute slides without prior
permission.

2

Goal(s) for today

3

4

Today’s talk is almost all motivation

5

Convince you to change your code from the left side to the right side

6

Fewer lines of code

Convince you to change your code from the left side to the right side

7

Fewer lines of code

More Confidence in the Correctness of our Code

Convince you to change your code from the left side to the right side

8

Fewer lines of code

More Confidence in the Correctness of our Code

More Maintainable Code to Reason about

Convince you to change your code from the left side to the right side

9

Fewer lines of code

More Confidence in the Correctness of our Code

More Maintainable Code to Reason about

Convince you to change your code from the left side to the right side

And begin your exploration of std::algorithm

10

I will be your tour guide on this journey

Folkestone “Zig Zag path”

https://s0.geograph.org.uk/geophotos/05/29/27/5292787_62061ea2.jpg

Your Tour Guide for Today
by Mike Shah

● Associate Teaching Professor at Northeastern University in
Boston, Massachusetts.

○ I teach courses in computer systems, computer graphics, and game
engine development.

○ My research in program analysis is related to performance building
static/dynamic analysis and software visualization tools.

● I do consulting and technical training on modern C++,
Concurrency, OpenGL, and Vulkan projects

○ (Usually graphics or games related)

● I like teaching, guitar, running, weight training, and anything
in computer science under the domain of computer graphics,
visualization, concurrency, and parallelism.

● Contact information and more on: www.mshah.io
● More online training coming at courses.mshah.io 11

http://www.mshah.io
http://courses.mshah.io

Code for the talk

● Located here: https://github.com/MikeShah/Talks/tree/main/2022_cpponsea

12

https://github.com/MikeShah/Talks/tree/main/2022_cpponsea

Abstract

One of the most beautiful parts of the standard library is also a best kept secret to
beginning C++ programmers -- std::algorithm. Most new C++ programmers
do not know the standard algorithms library exists! Often in introductory texts,
online tutorials or university courses, std::algorithm cannot even be found in
the table of contents! In this talk, I would like to provide a proper introduction to
std::algorithm. I will introduce the library, show how you can rewrite your
current code using std::algorithm, and also justify why you should be using
std::algorithm today and in the future. After this talk, my goal is for beginner C++
programmers to leave excited about uncovering a new paradigm for programming
in C++.

The abstract that you read and enticed
you to join me is here!

13

What you’re going to learn today

● For folks/students newer to C++
○ I’m going to give you an introduction to

a library that too often is a secret--
std::algorithm

○ I hope it will change the way you
consider writing C++ in your respective
domain

● For faculty, trainers, and those with
more experience

○ I hope to provide you examples to
motivate your students/colleagues to
use more std::algorithm and
(generally C++20 and beyond) in your
courseware.

Pretend these seats are filled :)
https://pixnio.com/free-images/2017/03/11/2017-03-11-16-47-11-550x413.jpg

14

https://pixnio.com/free-images/2017/03/11/2017-03-11-16-47-11-550x413.jpg

A Quick Story
(about my long journey learning C++,

and why this talk exists)

https://s0.geograph.org.uk/geophotos/03/09/13/3091367_5ca99096.jpg

15

https://s0.geograph.org.uk/geophotos/03/09/13/3091367_5ca99096.jpg

My Very Traditional Journey Learning C++

● I began formally learning a ‘custom version’ of
C++ in university around 2008/2009.

○ Something strange though, was that the course never
once mentioned std::algorithm!

○ It was very much a ‘C with Classes’ type of instruction.
● So I really did not know #include

<algorithm> existed for years!
○ So what is std::algorithm?
○ And why do I need it--I have been writing software

programs just fine without it for years!
○ (next slide)

https://m.economictimes.com/thumb/msid-76642954,width-1200,height-900,resizemode-4,imgsize-330838/although-a-separate-court-c
ase-established-early-holmes-novels-are-in-the-public-domain-the-lawsuit-alleges-the-detective-only-developed-feelings-in-the-last-10-b
ooks-.jpg

16

https://m.economictimes.com/thumb/msid-76642954,width-1200,height-900,resizemode-4,imgsize-330838/although-a-separate-court-case-established-early-holmes-novels-are-in-the-public-domain-the-lawsuit-alleges-the-detective-only-developed-feelings-in-the-last-10-books-.jpg
https://m.economictimes.com/thumb/msid-76642954,width-1200,height-900,resizemode-4,imgsize-330838/although-a-separate-court-case-established-early-holmes-novels-are-in-the-public-domain-the-lawsuit-alleges-the-detective-only-developed-feelings-in-the-last-10-books-.jpg
https://m.economictimes.com/thumb/msid-76642954,width-1200,height-900,resizemode-4,imgsize-330838/although-a-separate-court-case-established-early-holmes-novels-are-in-the-public-domain-the-lawsuit-alleges-the-detective-only-developed-feelings-in-the-last-10-books-.jpg

Algorithms + Data Structures = Programs

● Niklaus Wirth’s 1976 book’s title captures a good
definition of what a software program is.

17

(I own a copy of this wonderful book!)

Algorithms + Data Structures = Programs

● Niklaus Wirth’s 1976 book’s title captures a good
definition of what a software program is.

18

(I own a copy of this wonderful book!)

● Algorithms* -- usually are indicated with at
least one loop and a series of function calls

● Data Structures -- usually some sort of
container -- like std::vector in C++

*Of course -- not all algorithms require or are defined as having a loop.

Algorithms + Data Structures = Programs

● Niklaus Wirth’s 1976 book’s title captures a good
definition of what a software program is.

19

(I own a copy of this wonderful book!)

● Algorithms* -- usually are indicated with at
least one loop and a series of function calls

● Data Structures -- usually some sort of
container -- like std::vector in C++

Algorithms + Data Structures = Programs

● Niklaus Wirth’s 1976 book’s title captures a good
definition of what a software program is.

20

(I own a copy of this wonderful book!)

● Algorithms* -- usually are indicated with at
least one loop and a series of function calls

● Data Structures -- usually some sort of
container -- like std::vector in C++

So let’s write a few programs
and see if this equation holds

in C++

This is Programming - Part 1
std::vector

21

This is Programming - Part 1
std::vector

Starting with how *I* have observed many learn
C++ as a beginner

22

Vector Part 1

● To the right will be an example
program introducing the container
std::vector

● It reasonably shows that
std::vector is a built-in
container available in the
Standard Template Library (STL)

23

Vector Part 1

● To the right will be an example
program introducing the container
std::vector

● It reasonably shows that
std::vector is a built-in
container available in the
Standard Template Library (STL)

Here’s what could be a new library (STL Container) to a
beginner -- std::vector

24

Vector Part 1

● To the right will be an example
program introducing the container
std::vector

● It reasonably shows that
std::vector is a built-in
container available in the
Standard Template Library (STL)

● Example creating a std::vector named ‘collection’
● We use an initializer_list to populate ‘collection’.

25

https://en.cppreference.com/w/cpp/utility/initializer_list

Vector Part 1

● To the right will be an example
program introducing the container
std::vector

● It reasonably shows that
std::vector is a built-in
container available in the
Standard Template Library (STL)

● And now I introduce a few common member functions
that operate on our collection: push_back, size(),
and operator[]

26

Vector Part 1

● To the right will be an example
program introducing the container
std::vector

● It reasonably shows that
std::vector is a built-in
container available in the
Standard Template Library (STL)

● And at this point, often we may move onto teaching
students another container.

27

Vector Part 1

● To the right will be an example
program introducing the container
std::vector

● It reasonably shows that
std::vector is a built-in
container available in the
Standard Template Library (STL)

● And our equation holds!
○ Algorithms + Data Structures = Programs

28

Vector Part 1

● To the right will be an example
program introducing the container
std::vector

● It reasonably shows that
std::vector is a built-in
container available in the
Standard Template Library (STL)

● And our equation holds!
○ Algorithms + Data Structures = Programs

29

We have an algorithm
(A loop that runs ‘i’
iterations)

Vector Part 1

● To the right will be an example
program introducing the container
std::vector

● It reasonably shows that
std::vector is a built-in
container available in the
Standard Template Library (STL)

● And our equation holds!
○ Algorithms + Data Structures = Programs

30

We have a data
structure to store some
computation

This is Programming - Part 2
std::vector

31

Next progression -- Write ‘better C++’ code

This is Programming - Part 2
std::vector

32

Continue learning
foundational building
blocks

Jump straight
into optimization
land

A choice for how to -- write ‘better C++’ code

This is Programming - Part 2
std::vector

33

Continue learning
foundational building
blocks

Jump straight
into optimization
land

A choice for how to -- write ‘better C++’ code

This is where things get a little tricky
when it comes to learning C++.

https://media.istockphoto.com/photos/cross-roads-horizon-picture-id135526449?k=20&m=135526449&s=612x612&w=0&h=JljD8f5qfFnRHXFvXF2_iCZdHbN2_8guWI75xz2dRbI=

https://media.istockphoto.com/photos/cross-roads-horizon-picture-id135526449?k=20&m=135526449&s=612x612&w=0&h=JljD8f5qfFnRHXFvXF2_iCZdHbN2_8guWI75xz2dRbI=

This is Programming - Part 2
std::vector

34

Continue learning
foundational building
blocks

Jump straight
into optimization
land

A choice for how to -- write ‘better C++’ code

I think too often we jump into this
direction -- let’s see what happens.

https://media.istockphoto.com/photos/cross-roads-horizon-picture-id135526449?k=20&m=135526449&s=612x612&w=0&h=JljD8f5qfFnRHXFvXF2_iCZdHbN2_8guWI75xz2dRbI=

https://media.istockphoto.com/photos/cross-roads-horizon-picture-id135526449?k=20&m=135526449&s=612x612&w=0&h=JljD8f5qfFnRHXFvXF2_iCZdHbN2_8guWI75xz2dRbI=

Vector Part 2 - A better version

● After introducing students to some
small examples, we then want
them to write “better C++” code

● “Better code” generally means:
○ More precise
○ More resilient to bugs
○ More performant
○ Easier to maintain

35

Vector Part 2 - A better version

● After introducing students to some
small examples, we then want
them to write “better C++” code

● “Better code” generally means:
○ More precise
○ More resilient to bugs
○ More performant
○ Easier to maintain

36

● Let’s improve this code

Vector Part 2 - A better version

● After introducing students to some
small examples, we then want
them to write “better C++” code

● “Better code” generally means:
○ More precise
○ More performant
○ More resilient to bugs
○ Easier to maintain

● Use an unsigned int for our index
● (Also ensures consistent unsigned int comparison with

collection.size())

37

Vector Part 2 - A better version

● After introducing students to some
small examples, we then want
them to write “better C++” code

● “Better code” generally means:
○ More precise
○ More performant
○ More resilient to bugs
○ Easier to maintain

● Use size_t -- even more precise code!
○ (By convention used for indexing)

38

https://en.cppreference.com/w/cpp/types/size_t

Vector Part 2 - A better version

● After introducing students to some
small examples, we then want
them to write “better C++” code

● “Better code” generally means:
○ More precise
○ More performant
○ More resilient to bugs
○ Easier to maintain

● pre-increment (++i) because that’ll be faster than post-increment (i++)
○ (the compiler may fix this for us--but let’s do the right thing first)

39

Vector Part 2 - A better version

● After introducing students to some
small examples, we then want
them to write “better C++” code

● “Better code” generally means:
○ More precise
○ More performant
○ More resilient to bugs
○ Easier to maintain

● Use .at(i) to do bounds checking -- even more bug
resilient

40

Vector Part 2 - Review

● More precise
○ Use an unsigned int for our index
○ Use size_t because that’s even better!

● More resilient to bugs
○ Use .at(i) to do bounds checking

● More performant
○ pre-increment because we think that’ll

be faster (the compiler may fix for us)
● Easier to maintain/reason about

○ ??

● So here’s a summary of our improvements we
have learned to become ‘better programmers’

41

Vector Part 2 - Review

● More precise
○ Use an unsigned int for our index
○ Use size_t because that’s even better!

● More resilient to bugs
○ Use .at(i) to do bounds checking

● More performant
○ pre-increment because we think that’ll

be faster (the compiler may fix for us)
● Easier to maintain/reason about

○ ??

● Let’s stop here, but there are more suggestions....
○ Get rid of the push_back(4) and add to our initializer list...
○ rename idx instead of i
○ i< collection.size() => i != collection.size()-1

42

Vector Part 2 - Review

● More precise
○ Use an unsigned int for our index
○ Use size_t because that’s even better!

● More resilient to bugs
○ Use .at(i) to do bounds checking

● More performant
○ pre-increment because we think that’ll

be faster (the compiler may fix for us)
● Easier to maintain/reason about

○ ??

● I believe I have improved the code
● Someone would probably accept the new changes in a code review.
● But do you notice something missing?

43

Vector Part 2 - Review

● More precise
○ Use an unsigned int for our index
○ Use size_t because that’s even better!

● More resilient to bugs
○ Use .at(i) to do bounds checking

● More performant
○ pre-increment because we think that’ll

be faster (the compile may fix for us)
● Easier to maintain/reason about

○ ??

● Ooops! I didn’t really improve the
maintainability at all here
○ (maybe .at(i) counts?).
○ Maybe I could write some

comments at the least?
● But I really have not taught anyone

how to think or reason about their
code.

● As a systems-y programmer I like
the little details we added--but I
believe our journey ends here.

44

loops + classes == Programs?

● So I could stop the talk here
● I have written some C++ and

incrementally improved a valid
program.

○ The ‘loop’ is our algorithm describing
how we sequentially do something a
set number of times

○ The ‘class’ (std::vector) is our data
structure to store information

● This ‘program’ achieves its job,
and we have written software that
works.

45

11:00-12:00, Wed, 6th July 2022

60 minutes | Introductory Audience

Social: @MichaelShah
Web: mshah.io
Courses: courses.mshah.io
YouTube:
www.youtube.com/c/MikeShah

Thank you!
The end! Lunch time!

46

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah

This is Programming - Part 2
std::vector

47

Continue learning
foundational
building blocks

Jump straight
into optimization
land

Let’s try a different path
https://media.istockphoto.com/photos/cross-roads-horizon-picture-id135526449?k=20&m=135526449&s=612x612&w=0&h=JljD8f5qfFnRHXFvXF2_iCZdHbN2_8guWI75xz2dRbI=

https://media.istockphoto.com/photos/cross-roads-horizon-picture-id135526449?k=20&m=135526449&s=612x612&w=0&h=JljD8f5qfFnRHXFvXF2_iCZdHbN2_8guWI75xz2dRbI=

This is Programming -
Part 3

std::vector

Focusing on how to make our code Easier to maintain and reason
about

48

This is Programming -
Part 3

std::vector

49

We do a good job as teachers teaching and students learning this part

[Containers cppref]

https://en.cppreference.com/w/cpp/container

This is Programming -
Part 3

std::vector

50

But we need to spend more time emphasizing this part on our journey to
write better and more maintainable code.

This is Programming -
Part 3

std::vector

51

Let’s start here

Vector Part 3 - Introducing Iterators

● So the new question is--how can I
make it more maintainable and
easy to reason about?

○ We need some building blocks
● We have actually missed a major

part of the Standard Template
Library (STL) that is helpful!

○ **Iterators**
○ (Next slide)

52

Iterators in C++

● An iterator in C++ is an object that allows
you to access elements in a collection.

○ e.g. An iterator may be a pointer to a specific
element.

■ begin() and end() give us convenient
access to the beginning or end of a collection

■ (Note: It’s probably more interesting for maps
or graph data structures--but let’s stay with
std::vector)

○ This iterator can advance to the next element in
some manner

■ Often advancing forward sequentially
■ (could be backwards, or perhaps random

access [more on iterator library] as well)
53

72 57 43 99 22

iter.begin() iter.end()

https://en.cppreference.com/w/cpp/iterator

Iterators in C++

● We use a pair of iterators to move through
the beginning and end of a collection and
perform some computation.

○ We call the pair of iterators a range.
■ A ‘range’ is a pair of iterators designating the

beginning and end of our computation.
■ [begin, end)

● ^ Note the interval notation
● The range is where we want to do our

algorithmic work

54

72 57 43 99 22

iter.begin() iter.end()

Vector Part 3 - Using Iterators

● Let’s use a pair of iterators to
sequentially move through our
entire collection.

○ collection.begin() and
collection.end()

● Using iterators is powerful
because we decouple the
‘algorithm’ of how we iterate (in
this example forward iteration)
from our actual container data
structure.

55

Vector Part 3 - Using Iterators

● Iterators are a behavioral design
pattern:

○ Shows more clearly the intent to
iterate through the entire collection
from beginning to end

○ Decouples our traversal code from the
container.

○ Would likely be easier to change if I
decided to change the data structure
(e.g. use a std::list)

■ (Consistent API in STL)

56

https://en.wikipedia.org/wiki/Iterator_pattern
https://en.wikipedia.org/wiki/Iterator_pattern

Vector Part 3 - Using Iterators

● Iterators are a behavioral design
pattern:

○ Shows more clearly the intent to
iterate through the entire collection
from beginning to end

○ Decouples our traversal code from the
container.

○ Would likely be easier to change if I
decided to change the data structure
(e.g. use a std::list)

■ (Consistent API in STL)

So with the introduction of one
feature in the C++ STL
(iterators), we can review the
claims I can make about writing
better C++ code

57

https://en.wikipedia.org/wiki/Iterator_pattern
https://en.wikipedia.org/wiki/Iterator_pattern

Vector Part 3 - Code Review

● More precise
○ ??

● More resilient to bugs
○ ??

● More performant
○ ??

● Easier to maintain/reason about
○ ??

58

Vector Part 3 - Code Review

● More precise
○ The intent is clear -- sequentially

access one element at a time
● More resilient to bugs

○ ??
● More performant

○ ??
● Easier to maintain/reason about

○ ??

59

Vector Part 3 - Code Review

● More precise
○ The intent is clear -- sequentially

access one element at a time
● More resilient to bugs*

○ The bounds checking invariants
hold--I only can look at elements from
the start to the finish

● More performant
○ ??

● Easier to maintain/reason about
○ ??

60
*Careful when erasing elements, or otherwise operations in multithreaded code

Vector Part 3 - Code Review

● More precise
○ The intent is clear -- sequentially

access one element at a time
● More resilient to bugs

○ The bounds checking invariants
hold--I only can look at elements from
the start to the finish

● More performant*
○ Need to officially measure, but should

be equivalent or negligible difference
● Easier to maintain/reason about

○ ??

61*Anecdotally iterators have not been a major performance bottleneck in my code versus raw loops.
Okay fine...If you’re using SIMD instructions on a vector adding numbers a raw loop can be more automatically or hand-tuned for optimal performance.

Vector Part 3 - Code Review

● More precise
○ The intent is clear -- sequentially access

one element at a time
● More resilient to bugs

○ The bounds checking invariants hold--I
only can look at elements from the start
to the finish

● More performant
○ Need to officially measure, but should be

equivalent or negligible difference
● Easier to maintain/reason about

○ Yes--I’d argue I have less ‘things’ that I
can toggle or have to worry about.

○ I can change the iterator implementation,
and the client would not need to do
anything (i.e. iterators decouple our
traversal from the container) 62

Vector Part 2 - Raw Loop | Vector Part 3 - Using Iterators

●

● So the latest example (Vector Part 3 on the right) I’m arguing has more qualities of
being ‘good code’ as Vector Part 2 (on the left).

63

Vector Part 2 - Raw Loop | Vector Part 3 - Using Iterators

●

● For someone new to learning C++, iterators are perhaps intimidating to simply type.
○ (They could use ‘auto’ as well)

● Or perhaps they sound scary and learners avoid learning them when they can simply write code
with raw loops like on the left. 64

Vector Part 2 - Raw Loop | Vector Part 3 - Using Iterators

●

● But iterators are an important part of the C++ STL, and using them to traverse
containers is important for code clarity.

● You can reason about the start and end of a computation more easily. 65

Vector Part 2 - Raw Loop | Vector Part 3 - Using Iterators

●

● I also have some good news for those who do not like typing....
66

This is Programming - Part 4
std::vector

Introducing Ranged-Based For-loop -- more
concise syntax

67

Vector Part 4

● C++11 introduced a ranged-based
for loop [cppref].

○ The syntax is more concise
○ The loop itself signals our intent to

iterate through every element.
■ (Now we don’t have to worry if

we get the bounds on the loop
condition correct either)

68

https://en.cppreference.com/w/cpp/language/range-for

Vector Part 4

● C++11 introduced a ranged-based
for loop [cppref].

○ The syntax is more concise
○ The loop itself signals our intent to

iterate through every element.
■ (Now we don’t have to worry if

we get the bounds on the loop
condition correct either)

69

(Aside) How is a Range implemented?
● Using the tool ‘cppinsights’ notice a

‘ranged-based for loop’ is translated into
code using a forward iterator.

○ (On the left I have the ranged-loop, and on the
right the insight in the code).

○ https://cppinsights.io/s/1200df99

https://en.cppreference.com/w/cpp/language/range-for
https://cppinsights.io/s/1200df99

Vector Part 4

● Now, some of you students who
were lucky learned C++11

● C++11 introduced a ranged-based
for loop [cppref].

○ This shows our intent, to operate on
each element in a collection

■ (Now don’t have to worry if we
get the conditions correct on the
for-loop)

Now to me, this is a bit of a revelation, and one of the first
things that made me actually say “C++ is an elegant
language”

70

https://en.cppreference.com/w/cpp/language/range-for

This is Programming - Part 2
std::vector

71

Continue learning
foundational building
blocks

Jump straight
into optimization
land

Iterators provide us a great building block
for defining ranges of computation!

Our exciting journey is starting!
https://media.istockphoto.com/photos/cross-roads-horizon-picture-id135526449?k=20&m=135526449&s=612x612&w=0&h=JljD8f5qfFnRHXFvXF2_iCZdHbN2_8guWI75xz2dRbI=

Continue further

https://media.istockphoto.com/photos/cross-roads-horizon-picture-id135526449?k=20&m=135526449&s=612x612&w=0&h=JljD8f5qfFnRHXFvXF2_iCZdHbN2_8guWI75xz2dRbI=

This is Programming
- Part 5

Algorithmic
Thinking

72

And we’ll take a look at some more interesting
problems -- and get to std::algorithm

Compute the Average of Positive Numbers in std::vector

73

● So here’s a potential problem
○ Compute the average of all of the

integers greater than zero in a
collection.

● Probably fairly trivial for us--but let’s
look at some possible solutions.

Compute the Average of Positive Numbers in std::vector

74

● So here’s a potential problem
○ Compute the average of all of the

integers greater than zero in a
collection.

● Probably fairly trivial for us--but let’s
look at some possible solutions.

Compute the Average of Positive Numbers in std::vector

75

● So here’s a potential problem
○ Compute the average of all of the

integers greater than zero in a
collection.

● Probably fairly trivial for us--but let’s
look at some possible solutions.

● Simple solution:
○ Loop through all of our elements

Compute the Average of Positive Numbers in std::vector

76

● So here’s a potential problem
○ Compute the average of all of the

integers greater than zero in a
collection.

● Probably fairly trivial for us--but let’s
look at some possible solutions.

● Simple solution:
○ Loop through all of our elements
○ Test values that are greater than 0
○ Accumulate the total elements

that satisfy this condition

Compute the Average of Positive Numbers in std::vector

77

● So here’s a potential problem
○ Compute the average of all of the

integers greater than zero in a
collection.

● Probably fairly trivial for us--but let’s
look at some possible solutions.

● Simple solution:
○ Loop through all of our elements
○ Test values that are greater than 0
○ Accumulate the total elements

that satisfy this condition

I can confirm this solution works with our
sample data

Average of Positive Numbers - Round 2

78

● So let’s extend the program:
○ Compute the average of all of the

integers greater than zero in a
collection.

○ **And we also want to keep the
resulting set of values.**

Average of Positive Numbers - Round 2

79

● So let’s extend the program
○ Compute the average of all of the

integers greater than zero in a
collection.

○ **And we also want to keep the
resulting set of values.**

● Probably fairly trivial for us--but let’s
look at some possible solutions.● Add in a collection to store our results

Average of Positive Numbers - Round 2

80

● So let’s extend the program
○ Compute the average of all of the

integers greater than zero in a
collection.

○ **And we also want to keep the
resulting set of values.**

● Probably fairly trivial for us--but let’s
look at some possible solutions.● Add in a collection to store our results

● Store each element in the new
collection

Average of Positive Numbers - Round 2

81

● So let’s extend the program
○ Compute the average of all of the

integers greater than zero in a
collection.

○ **And we also want to keep the
resulting set of values.**

● Probably fairly trivial for us--but let’s
look at some possible solutions.● Add in a collection to store our results

● Store each element in the new collection
● Can take advantage of the collection

size now.

Average of Positive Numbers - Round 3 (Top 3 numbers average)

82

● Let’s extend our program further
○ Compute the average of all of the

integers greater than zero in a
collection.

○ And we also want to keep the resulting
set of values.

○ **Now I want you to only take the
average of the top 3 values**

Average of Positive Numbers - Round 3 (Top 3 numbers average)

83

● Let’s extend our program further
○ Compute the average of all of the

integers greater than zero in a
collection.

○ And we also want to keep the resulting
set of values.

○ **Now I want you to only take the
average of the top 3 values**

● Added some more test data

Average of Positive Numbers - Round 3 (Top 3 numbers average)

84

● Let’s extend our program further
○ Compute the average of all of the

integers greater than zero in a
collection.

○ And we also want to keep the resulting
set of values.

○ **Now I want you to only take the
average of the top 3 values**

● I have to think a bit here, but my
algorithm is to ‘sort the values’, then
I’ll just take the top 3 values.

Average of Positive Numbers - Round 3 (Top 3 numbers average)

85

● Let’s extend our program further
○ Compute the average of all of the

integers greater than zero in a
collection.

○ And we also want to keep the resulting
set of values.

○ **Now I want you to only take the
average of the top 3 values**

● I have to think a bit here, but my algorithm
is to ‘sort the values’, then I’ll just take the
top 3 values.

● And my sort function--I had to think a
bit more about that...

86

So here we are, I’ve solved a non-trivial problem on our journey,
adding conditionals and writing algorithms along the way.

87

We acquired some data

-1 1 -2 2 -3 3 -4 4 -5 5

88

‘filtered’ it to a new collection

-1 1 -2 2 -3 3 -4 4 -5 5

1 2 3 4 5

89

Sorted the data (it was already sorted)

-1 1 -2 2 -3 3 -4 4 -5 5

1 2 3 4 5

90

Then computed a result taking the average of the top 3 values

-1 1 -2 2 -3 3 -4 4 -5 5

1 2 3 4 5

91

Now let me show you using std::algorithm
-- when writing this I spent my time thinking as opposed to writing code.

Introducing std::algorithm
Spend more time thinking about which ‘building block to choose’ rather than what

code to write from scratch.

92

Why use STL Algorithms

● Serve as general purpose building blocks for solving difficult problems
● Help make it easier to reason about and maintain your code

○ (i.e. avoiding raw loops)
● They’re well tested and debugged
● Generally reduces your code size

○ See example below

93

Example from: CppCon 2016: Marshall Clow “STL
Algorithms - why you should use them, and how to write
your own"

https://youtu.be/h4Jl1fk3MkQ?t=392
https://youtu.be/h4Jl1fk3MkQ?t=392

Is std::algorithm something new in Modern C++?

● Not at all!
○ (Even more odd that I

never really heard of or
started using it until
modern C++ era.)

● To the right is an image
of the 1998 C++
standard with the
Algorithms Library
defined.

https://www.lirmm.fr/~ducour/Doc-objets/ISO+IEC+14882-1998.pdf

94

https://www.lirmm.fr/~ducour/Doc-objets/ISO+IEC+14882-1998.pdf

(Aside: Here’s a draft of a recent C++ standard in 2022)

● The algorithms library
still exists and is
remains an increasingly
important part of C++!

https://eel.is/c++draft/algorithms

95

https://eel.is/c++draft/algorithms

(Aside: Here’s a draft of a recent C++ standard in 2022)

● The algorithms library
still exists and is
remains an increasingly
important part of C++!

https://eel.is/c++draft/algorithms

96

Let’s dive in!

My goal being to show you some neat
algorithms that are available.

https://eel.is/c++draft/algorithms

Average Top 3 Positive Numbers - Algorithm Version

97

● Same problem--this time using the
STL algorithm and numerics library

Average Top 3 Positive Numbers - Algorithm Version

98

● Same problem--this time using the
STL algorithm and numerics library

● We use ‘copy_if’ which
will copy elements from
[start,end) into another
collection if some predicate
is true.
○ Let’s look closer at

copy_if for a moment...

https://en.cppreference.com/w/cpp/algorithm/copy

99

Let’s take a moment to understand the ‘general form’ of
std::algorithm functions

100

First we have the range of elements we want to copy -- remember
iterators tell us our ‘range’ of where we want to perform some computation

101

The next most common part is our ‘predicate’.
Something that if returns true, applies the operation on a given element.

102

Frequently our predicates will be lambda functions.

103

Since we are ‘copying’ we have a destination range.
back_inserter is an iterator adaptor that can be used with containers that have a push_back
function to add to the collection.

https://en.cppreference.com/w/cpp/iterator/back_inserter

copy_if

104

●

So here’s the copy_if documentation and code in one place.
(I’ll mention policy later -- it’s part of an overload)

https://en.cppreference.com/w/cpp/algorithm/copy

Average Top 3 Positive Numbers - Algorithm Version

105

● Same problem--this time using the
STL algorithm and numerics library

● We now have copied all
integers greater than zero
into a new collection
○ Look--no raw for-loops

needed!
● (Next part...)

Average Top 3 Positive Numbers - Algorithm Version

106

● Same problem--this time using the
STL algorithm and numerics library

● std::sort is somewhat
explanatory
○ We sort from the start to the

end of a range
○ And we actually get an

O(nlog2n) sorting algorithm
■ (Better than my ad-hoc

insertion sort!)

https://en.cppreference.com/w/cpp/algorithm/sort

Average Top 3 Positive Numbers - Algorithm Version

107

● Same problem--this time using the
STL algorithm and numerics library

● std::accumulate takes a range (start
and end iterator) and sums up their
values
○ Note: our starting iterator is -3

from the end of our sorted
collection
■ Thus, the last three

elements are added.
■ (Kind of neat to play with

iterators!)

https://en.cppreference.com/w/cpp/algorithm/accumulate

Average Top 3 Positive Numbers - Algorithm Version

108

● Same problem--this time using the
STL algorithm and numerics library

● Here’s the full program
○ (And it works!)

● And what’s important, is how we
thought about our operations:
○ What range to copy
○ What range to sort
○ What range to accumulate

● Less thought on small details like our
first two examples (vector part 1 & 2)

Building Blocks and
Rapid Fire of Small

Examples
My Goal at this point is to just show you

what is available -- Hopefully you’re
motivated now!

109

https://www.youtube.com/watch?v=2olsGf6JIkU - For a more
full coverage on nearly every STL algorithm start here!

https://www.youtube.com/watch?v=2olsGf6JIkU

High Level Overview of std::algorithm Building Blocks [cppref]

● Non-modifying sequence operations
● Modifying sequence operations
● Partitioning operations
● Sorting operations
● Binary search operations (on sorted ranges)
● Other operations on sorted ranges
● Set operations (on sorted ranges)
● Heap operations
● Minimum/maximum operations
● Comparison operations
● Permutation operations
● Numeric operations
● Operations on uninitialized memory
● C library

110

https://en.cppreference.com/w/cpp/algorithm

High Level Overview of std::algorithm Building Blocks [cppref]

● Non-modifying sequence operations
● Modifying sequence operations
● Partitioning operations
● Sorting operations
● Binary search operations (on sorted ranges)
● Other operations on sorted ranges
● Set operations (on sorted ranges)
● Heap operations
● Minimum/maximum operations
● Comparison operations
● Permutation operations
● Numeric operations
● Operations on uninitialized memory
● C library

111

https://en.cppreference.com/w/cpp/algorithm

112

● Pretty much identical to our ranged-based loop, but for_each (or for_each_n) pushes the level of
abstraction one layer further.

● This time using iterators and applies a lambda function (‘println’) to each element in the
std::vector.

○ Note: This time using const_iterators to enforce const correctness.

https://en.cppreference.com/w/cpp/algorithm/for_each
https://en.cppreference.com/w/cpp/algorithm/for_each_n

Sorting Operations -- is_sorted

● Check if a collection is
sorted prior to performing a
sort routine.

○ (Small improvement on our
previous example of
computing averages)

○ Other variations exist

113

https://en.cppreference.com/w/cpp/algorithm/is_sorted

Partitioning Operations -- partition (or stable_partition)

● This time partition all of the
negative numbers in a first
group, and positive
numbers in a second group

○ std::partition will return an
iterator to the second group

● (next slide)

114

https://en.cppreference.com/w/cpp/algorithm/partition
https://en.cppreference.com/w/cpp/algorithm/stable_partition

Partitioning Operations -- partition (or stable_partition)

● This time partition all of the
negative numbers in a first
group, and positive
numbers in a second group

○ std::partition will return an
iterator to the second group

● Then sort only the positive
numbers in our second
group

○ (and proceed to accumulate
and take average of top 3
values)

115

https://en.cppreference.com/w/cpp/algorithm/partition
https://en.cppreference.com/w/cpp/algorithm/stable_partition

Partitioning Operations -- nth_element

● This time we find the
average of 3 median
values.

○ e.g. Median filter for noise
reduction in image processing

● nth_element partitions at
the nth element putting
smaller values in front of
the value.

116

https://en.cppreference.com/w/cpp/algorithm/nth_element

Numeric Operation -- iota

● Fill a range with successive
elements (line 13)

○ (Could also do something similar
with generate)

● Then we ‘shuffle’ the collection
to get a set of random numbers
(line 15-18)

● Note:
○ This uses something new called

‘ranges’ in C++20
○ Try here:

https://godbolt.org/z/cbrsx35j5

117

https://en.cppreference.com/w/cpp/algorithm/iota
https://en.cppreference.com/w/cpp/algorithm/generate
https://godbolt.org/z/cbrsx35j5

C++ 20 ranges and views
Brief introduction to Ranges and Views

118

C++ 20 Ranges [cppref]

119

● In short, ranges in C++ build off (most all) the std::algorithm functions.
○ Algorithms operate directly on the container
○ Composition with the ‘|’ operator
○ Lazy evaluation

https://en.cppreference.com/w/cpp/ranges

Ranges - Example

120

● Draw your
attention to lines
18-20

● Try it!
○ https://godbolt.or

g/z/fn5e38f7b

https://godbolt.org/z/fn5e38f7b
https://godbolt.org/z/fn5e38f7b

This is Programming - Part 2
std::vector

121

Continue learning
foundational building
blocks

Jump straight
into optimization
land

We’ve been introduced to std::algorithm--now we
can further optimize

Our exciting journey can continue in std::algorithm
however!

https://media.istockphoto.com/photos/cross-roads-horizon-picture-id135526449?k=20&m=135526449&s=612x612&w=0&h=JljD8f5qfFnRHXFvXF2_iCZdHbN2_8guWI75xz2dRbI=

Think more
algorithmic rather
than ad-hoc code.

Now optimize

https://media.istockphoto.com/photos/cross-roads-horizon-picture-id135526449?k=20&m=135526449&s=612x612&w=0&h=JljD8f5qfFnRHXFvXF2_iCZdHbN2_8guWI75xz2dRbI=

Performance with std::algorithm
(And opening your code up for parallelism)

122

Measuring Performance of std::algorithm

123

● The reality is this isn’t the right talk to talk
about measuring performance.

● That said -- most std::algorithm have
an overload for ‘execution policy’

○ This execution policy can be sequential, or
parallel for instance

○ This means there are opportunities to more
easily parallelize your code using
std::algorithm

■ A more complete introduction by Bryce
[cppcon 2021]

○ More opportunities may be spotted for
asynchronous programming as well in my
experience using std::algorithm

● Example: https://godbolt.org/z/TeW9T8jMs

https://www.youtube.com/watch?v=LW_T2RGXego
https://godbolt.org/z/TeW9T8jMs

Bonus Section
(If Time Allows)

124

Did you notice the error in one of my code examples?

● I left it in, because after hours of preparing these
slides, I thought it was fitting for a talk motivating
std::algorithm

125

?

Did you notice the error in one of my code examples?

● I left it in, because after hours of preparing these
slides, I thought it was fitting for a talk motivating
std::algorithm

○ Yup--some leftover unused variables during refactoring!
○ Static analysis might’ve picked this up, but it happens

during code refactorings!

126

(Audience thoughts?) std::algorithm - Code Review

● More precise
○ ??

● More resilient to bugs
○ ??

● More performant
○ ??

● Easier to maintain/reason about
○ ??

● Note:
○ For online/future listeners--how many

other ways did you find to implement
this?

○ How efficient can you make this if
you’re allowed to modify collection?) 127

Conclusion
Wrapping up what we’ve learned

128

Conclusion -- C++ Programmers

129

● We’ve taken a tour of writing a program (data structure + algorithm) from a
very ‘C with classes approach’ to a ‘C++ std::algorithm building blocks
approach’

● If you’re teaching C++ -- teach std::algorithm from the start.
○ Incorporate std::algorithm as early (as is reasonable) so your students can write better

code.
○ We could have saved ourselves a long journey otherwise to writing more interesting code!

● std::algorithm can help you write more maintainable code that’s easier
to reason about.

○ Yes--there are probably performance use cases if you’re building low latency trading systems
or game engine programming where you’ll want to use vectorized loops and hand roll your
own algorithms from scratch...

Further resources and training materials

130

● GoingNative 2013 - Sean Parent - C++ Seasoning
● CppCon 2015 - Michael VanLoon “STL Algorithms in Action ”
● CppCon 2016 - Marshall Clow “STL Algorithms - why you should use them, and how to write your own"
● CppCon 2018 - Jonathan Boccara “105 STL Algorithms in Less Than an Hour”
● CppCon 2019 - Dvir Yitzchaki - Range Algorithms, Views and Actions: A Comprehensive Guide
● CppCon 2019 - Conor Hoekstra “Algorithm Intuition (part 1 and part 2)”
● CppCon 2021 - Bob Steagall - Back to Basics: Classic STL
● CppCon 2021 - Bryce Adelstein Lelbach - C++ Standard Parallelism
● https://blog.tartanllama.xyz/accumulate-vs-reduce/

○ Discussion on std::accumulate vs std::reduce
● https://hackingcpp.com/cpp/std/algorithms/intro.html

○ Nice visualizations and cheat sheets on algorithms

https://www.youtube.com/watch?v=W2tWOdzgXHA
https://www.youtube.com/watch?v=eidEEmGLQcU
https://www.youtube.com/watch?v=h4Jl1fk3MkQ
https://www.youtube.com/watch?v=2olsGf6JIkU
https://www.youtube.com/watch?v=qQtS50ZChN8
https://www.youtube.com/watch?v=pUEnO6SvAMo
https://www.youtube.com/watch?v=sEvYmb3eKsw
https://www.youtube.com/watch?v=tXUXl_RzkAk
https://www.youtube.com/watch?v=LW_T2RGXego
https://blog.tartanllama.xyz/accumulate-vs-reduce/
https://hackingcpp.com/cpp/std/algorithms/intro.html

A Homework Assignment for Students

131

● Take a look at our example, and to
rewrite it 5 different ways using
different parts of std::algorithm.

○ remove_if - remove more safely
negative values...

○ transform - Make all negative values
0, sort, then accumulate top 3 values

○ reverse - Sort, reverse, take top
three values

○ make_heap - Then pop 3 elements
○ etc.

● As a learner get creative, try
solutions, study complexity, and
then measure -- while having fun!.

11:00-12:00, Wed, 6th July 2022

60 minutes | Introductory Audience

Social: @MichaelShah
Web: mshah.io
Courses: courses.mshah.io
YouTube:
www.youtube.com/c/MikeShah

Thank you!

132

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah

Thank you!

133

Extra

134

